85 lines
2.8 KiB
R
85 lines
2.8 KiB
R
# Libraries
|
|
library(ggplot2)
|
|
library(matrixStats)
|
|
ta <- as.matrix(read.table(file.choose(), sep=",", header = FALSE))
|
|
ta <- t(ta)
|
|
dim(ta)
|
|
head(ta)
|
|
|
|
# Create dummy data
|
|
data <- data.frame(
|
|
y=ta[,1],
|
|
y2=ta[,2],
|
|
y3=ta[,3],
|
|
y4=ta[,4],
|
|
y5=ta[,5],
|
|
y6=ta[,6],
|
|
y7=ta[,7],
|
|
y8=ta[,8],
|
|
y9=ta[,9],
|
|
y10=ta[,10],
|
|
y11=ta[,11],
|
|
y12=ta[,12],
|
|
y13=ta[,13],
|
|
y14=ta[,14],
|
|
y15=ta[,15],
|
|
x=seq(1, length(ta[,1]))
|
|
)
|
|
ggplot(data, aes(x*1000)) +
|
|
labs(title="Discount factor = 0.99",
|
|
x ="Timestamp", y = "Avg. reward per timestamp", color = "Learning rate") +
|
|
ylim(-1.5,0.6) +
|
|
geom_line(aes(y = y, colour = "0.1"), size=1)+
|
|
geom_line(aes(y = y2, colour = "0.3"), size=1) +
|
|
geom_line(aes(y = y3, colour = "0.5"), size=1) +
|
|
geom_line(aes(y = y4, colour = "0.7"), size=1) +
|
|
geom_line(aes(y = y5, colour = "0.9"), size=1)
|
|
|
|
ggplot(data, aes(x*1000)) +
|
|
labs(title="Discount factor = 0.9",
|
|
x ="Timestamp", y = "Avg. reward per timestamp", color = "Learning rate") +
|
|
ylim(-1.5,0.6) +
|
|
geom_line(aes(y = y6, colour = "0.1"), size=1) +
|
|
geom_line(aes(y = y7, colour = "0.3"), size=1) +
|
|
geom_line(aes(y = y8, colour = "0.5"), size=1) +
|
|
geom_line(aes(y = y9, colour = "0.7"), size=1) +
|
|
geom_line(aes(y = y10, colour = "0.9"), size=1)
|
|
|
|
ggplot(data, aes(x*1000) ) +
|
|
labs(title="Discount factor = 0.5",
|
|
x ="Timestamp", y = "Avg. reward per timestamp", color = "Learning rate") +
|
|
ylim(-1.5,0.6) +
|
|
geom_line(aes(y = y11, colour = "0.1"), size=1) +
|
|
geom_line(aes(y = y12, colour = "0.3"), size=1) +
|
|
geom_line(aes(y = y13, colour = "0.5"), size=1) +
|
|
geom_line(aes(y = y14, colour = "0.7"), size=1) +
|
|
geom_line(aes(y = y15, colour = "0.9"), size=1)
|
|
|
|
# scale_x_log10(limits=c(1,150) )
|
|
# scale_y_log10( breaks=c(1,50,500,2500,25000), limits=c(1,25000) )
|
|
|
|
plot(ta, x=x*1000, log="x", type="o")
|
|
|
|
convergence <- read.csv(file.choose(), header=FALSE, row.names=1)
|
|
|
|
sds <- rowSds(sapply(convergence[,-1], `length<-`, max(lengths(convergence[,-1]))), na.rm=TRUE)
|
|
men <- rowMeans(sapply(convergence[,-1], `length<-`, max(lengths(convergence[,-1]))), na.rm=TRUE)
|
|
print(sds)
|
|
|
|
# create dummy data
|
|
data <- data.frame(
|
|
names=rownames(convergence),
|
|
means=men,
|
|
sds=sds
|
|
)
|
|
|
|
ggplot(data) +
|
|
geom_bar(aes(x=names, y=means), stat="identity", fill="skyblue", alpha=0.7) +
|
|
geom_errorbar( aes(x=names, ymin=means-sds, ymax=means+sds), width=0.4, colour="orange", alpha=0.9, size=1.3) +
|
|
geom_text(aes(label=as.integer(means), x =names, y=means), position=position_dodge(width=0.9), vjust=-0.25) +
|
|
xlab("Epsilon") + ylab("avg. amount of episodes until convergence")
|
|
|
|
|
|
ba <- barplot(names=rownames(convergence), height=men, ylim=c(0, max(men)*1.2), ylab = "avg. episodes until convergence", xlab = "epsilon value")
|
|
text(x = ba, y = men, label = as.integer(men), pos = 3, cex = 0.8, col = "red")
|