# Libraries library(ggplot2) library(matrixStats) library(MASS) library(reshape2) library(reshape) # file.choose() convergence <- read.csv(file.choose(), header=FALSE, row.names=1, skip=1) sds <- rowSds(sapply(convergence[,-1], `length<-`, max(lengths(convergence[,-1]))), na.rm=TRUE) men <- rowMeans(sapply(convergence[,-1], `length<-`, max(lengths(convergence[,-1]))), na.rm=TRUE) print(sds) # create dummy data data <- data.frame( names=rownames(convergence), means=men, sds=sds ) print(length(men)) convergence$group <- row.names(convergence) convergence.m <- melt(convergence, id.vars = "group") ggplot(data, aes(x=men, y=sds)) + geom_boxplot() ggplot(data) + geom_bar(aes(x=names, y=means, fill=means), stat="identity", color="black", alpha=0.8) + geom_errorbar( aes(x=names, ymin=means, ymax=means+sds), width=0.4, colour="black", alpha=0.8, size=0.6) + #geom_text(aes(label=as.integer(means), x =names, y=means), position=position_dodge(width=0.9), vjust=-0.25) + xlab("Epsilon") + ylab("avg. amount of episodes until convergence") #ba <- barplot(names=rownames(convergence), height=men, ylim=c(0, max(men)*1.2), ylab = "avg. episodes until convergence", xlab = "epsilon value") #text(x = ba, y = men, label = as.integer(men), pos = 3, cex = 0.8, col = "red")