Jan Löwenstrom
|
7d3d097599
|
add opening dialog to select all learning settings
|
2020-04-07 11:03:17 +02:00 |
Jan Löwenstrom
|
740289ee2b
|
add constant for default reward
|
2020-04-02 14:01:37 +02:00 |
Jan Löwenstrom
|
eca0d8db4d
|
create Dino Sampling state
|
2020-03-26 19:22:50 +01:00 |
Jan Löwenstrom
|
ee1d62842d
|
split Antworld into episodic and continuous task
- add new simple state for jumping dino, to see if convergence is guarenteed with with state representation
- changed reward structure for ant game
|
2020-03-15 16:58:53 +01:00 |
Jan Löwenstrom
|
6613e23c7c
|
Fixed new method name for MC
|
2020-03-02 23:19:54 +01:00 |
Jan Löwenstrom
|
77898f4e5a
|
add TD algorithms and started adopting to continous tasks
- add Q-Learning and SARSA
- more config variables
|
2020-02-17 13:56:55 +01:00 |
Jan Löwenstrom
|
518683b676
|
split GUI parts from controller into sub class
|
2019-12-31 14:43:40 +01:00 |
Jan Löwenstrom
|
e0160ca1df
|
adopt MVC pattern and add real time graph interface
|
2019-12-18 16:48:24 +01:00 |
Jan Löwenstrom
|
584d6a1246
|
add javaFX gradle plugin and switch to java11 and add system.outs for error detecting
- The current implementation will not converge to the correct behaviour. See comment in MonteCarlo class for more details
|
2019-12-10 15:37:20 +01:00 |
Jan Löwenstrom
|
0100f2e82a
|
remove the Action interface in favour of Enums
|
2019-12-09 17:30:14 +01:00 |
Jan Löwenstrom
|
2fb218a129
|
add separate class for intern Ant representation and adopt gui cell size to panel size
|
2019-12-09 12:08:53 +01:00 |
Jan Löwenstrom
|
db9b62236c
|
add logic to handle ant action and compute rewards
- ant world will handle and compute action received by the agent
- first try to convert observations to markov states
- improved .equals() methods
|
2019-12-08 16:03:00 +01:00 |
Jan Löwenstrom
|
87f435c65a
|
add basic core structure and first parts of antGame implementation
|
2019-12-07 22:05:11 +01:00 |
Jan Löwenstrom
|
66ee33b77f
|
init the gradle project
|
2019-12-06 13:11:29 +01:00 |