add features to gui to control learning and moving learning listener interface to controller

- Add metric to display episodes per second
- view not implementing learning listener anymore, controller does. Controller is controlling all view actions based upon learning events. Reacts to view events via viewListener
- add executor service for learning task
- using instance of to distinguish between episodic learning and td learning
- add feature to trigger more episodes
- add checkboxes for smoothing graph, displaying last 100 rewards only and drawing environment
- remove history panel from antworld gui
This commit is contained in:
Jan Löwenstrom 2019-12-22 17:06:54 +01:00
parent 34e7e3fdd6
commit b1246f62cc
14 changed files with 337 additions and 155 deletions

View File

@ -0,0 +1,15 @@
package core;
public class Util {
public static boolean isNumeric(String strNum) {
if (strNum == null) {
return false;
}
try {
double d = Double.parseDouble(strNum);
} catch (NumberFormatException nfe) {
return false;
}
return true;
}
}

View File

@ -2,4 +2,6 @@ package core.algo;
public interface Episodic {
int getCurrentEpisode();
int getEpisodesToGo();
int getEpisodesPerSecond();
}

View File

@ -2,9 +2,14 @@ package core.algo;
import core.DiscreteActionSpace;
import core.Environment;
import core.listener.LearningListener;
public abstract class EpisodicLearning<A extends Enum> extends Learning<A> implements Episodic{
protected int currentEpisode;
protected int episodesToLearn;
protected volatile int episodePerSecond;
protected int episodeSumCurrentSecond;
private volatile boolean meseaureEpisodeBenchMark;
public EpisodicLearning(Environment<A> environment, DiscreteActionSpace<A> actionSpace, float discountFactor, int delay) {
super(environment, actionSpace, discountFactor, delay);
@ -22,8 +27,56 @@ public abstract class EpisodicLearning<A extends Enum> extends Learning<A> imple
super(environment, actionSpace);
}
protected void dispatchEpisodeEnd(double recentSumOfRewards){
++episodeSumCurrentSecond;
rewardHistory.add(recentSumOfRewards);
for(LearningListener l: learningListeners) {
l.onEpisodeEnd(rewardHistory);
}
}
protected void dispatchEpisodeStart(){
for(LearningListener l: learningListeners){
l.onEpisodeStart();
}
}
@Override
public void learn(){
learn(0);
}
public void learn(int nrOfEpisodes){
meseaureEpisodeBenchMark = true;
new Thread(()->{
while(meseaureEpisodeBenchMark){
episodePerSecond = episodeSumCurrentSecond;
episodeSumCurrentSecond = 0;
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
episodesToLearn += nrOfEpisodes;
dispatchLearningStart();
for(int i=0; i < nrOfEpisodes; ++i){
nextEpisode();
}
dispatchLearningEnd();
meseaureEpisodeBenchMark = false;
}
protected abstract void nextEpisode();
@Override
public int getCurrentEpisode(){
return currentEpisode;
}
@Override
public int getEpisodesToGo(){
return episodesToLearn - currentEpisode;
}
}

View File

@ -24,7 +24,7 @@ public abstract class Learning<A extends Enum> {
protected Set<LearningListener> learningListeners;
@Setter
protected int delay;
private List<Double> rewardHistory;
protected List<Double> rewardHistory;
public Learning(Environment<A> environment, DiscreteActionSpace<A> actionSpace, float discountFactor, int delay){
this.environment = environment;
@ -47,29 +47,27 @@ public abstract class Learning<A extends Enum> {
this(environment, actionSpace, LearningConfig.DEFAULT_DISCOUNT_FACTOR, LearningConfig.DEFAULT_DELAY);
}
public abstract void learn(int nrOfEpisodes);
public abstract void learn();
public void addListener(LearningListener learningListener){
learningListeners.add(learningListener);
}
protected void dispatchEpisodeEnd(double recentSumOfRewards){
rewardHistory.add(recentSumOfRewards);
for(LearningListener l: learningListeners) {
l.onEpisodeEnd(rewardHistory);
}
}
protected void dispatchEpisodeStart(){
for(LearningListener l: learningListeners){
l.onEpisodeStart();
}
}
protected void dispatchStepEnd(){
for(LearningListener l: learningListeners){
l.onStepEnd();
}
}
protected void dispatchLearningStart(){
for(LearningListener l: learningListeners){
l.onLearningStart();
}
}
protected void dispatchLearningEnd(){
for(LearningListener l: learningListeners){
l.onLearningEnd();
}
}
}

View File

@ -11,27 +11,33 @@ import java.util.*;
* TODO: Major problem:
* StateActionPairs are only unique accounting for their position in the episode.
* For example:
*
* <p>
* startingState -> MOVE_LEFT : very first state action in the episode i = 1
* image the agent does not collect the food and drops it to the start, the agent will receive
* -1 for every timestamp hence (startingState -> MOVE_LEFT) will get a value of -10;
*
* <p>
* BUT image moving left from the starting position will have no impact on the state because
* the agent ran into a wall. The known world stays the same.
* Taking an action after that will have the exact same state but a different action
* making the value of this stateActionPair -9 because the stateAction pair took place on the second
* timestamp, summing up all remaining rewards will be -9...
*
* <p>
* How to encounter this problem?
*
* @param <A>
*/
public class MonteCarloOnPolicyEGreedy<A extends Enum> extends EpisodicLearning<A> {
private Map<Pair<State, A>, Double> returnSum;
private Map<Pair<State, A>, Integer> returnCount;
public MonteCarloOnPolicyEGreedy(Environment<A> environment, DiscreteActionSpace<A> actionSpace, float discountFactor, float epsilon, int delay) {
super(environment, actionSpace, discountFactor, delay);
currentEpisode = 0;
this.policy = new EpsilonGreedyPolicy<>(epsilon);
this.stateActionTable = new StateActionHashTable<>(this.actionSpace);
returnSum = new HashMap<>();
returnCount = new HashMap<>();
}
public MonteCarloOnPolicyEGreedy(Environment<A> environment, DiscreteActionSpace<A> actionSpace, int delay) {
@ -40,71 +46,64 @@ public class MonteCarloOnPolicyEGreedy<A extends Enum> extends EpisodicLearning<
@Override
public void learn(int nrOfEpisodes) {
public void nextEpisode() {
++currentEpisode;
List<StepResult<A>> episode = new ArrayList<>();
State state = environment.reset();
dispatchEpisodeStart();
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
e.printStackTrace();
}
double sumOfRewards = 0;
for (int j = 0; j < 10; ++j) {
Map<A, Double> actionValues = stateActionTable.getActionValues(state);
A chosenAction = policy.chooseAction(actionValues);
StepResultEnvironment envResult = environment.step(chosenAction);
State nextState = envResult.getState();
sumOfRewards += envResult.getReward();
episode.add(new StepResult<>(state, chosenAction, envResult.getReward()));
Map<Pair<State, A>, Double> returnSum = new HashMap<>();
Map<Pair<State, A>, Integer> returnCount = new HashMap<>();
if (envResult.isDone()) break;
state = nextState;
for(int i = 0; i < nrOfEpisodes; ++i) {
++currentEpisode;
List<StepResult<A>> episode = new ArrayList<>();
State state = environment.reset();
dispatchEpisodeStart();
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
e.printStackTrace();
}
double sumOfRewards = 0;
for(int j=0; j < 10; ++j){
Map<A, Double> actionValues = stateActionTable.getActionValues(state);
A chosenAction = policy.chooseAction(actionValues);
StepResultEnvironment envResult = environment.step(chosenAction);
State nextState = envResult.getState();
sumOfRewards += envResult.getReward();
episode.add(new StepResult<>(state, chosenAction, envResult.getReward()));
dispatchStepEnd();
}
if(envResult.isDone()) break;
dispatchEpisodeEnd(sumOfRewards);
System.out.printf("Episode %d \t Reward: %f \n", currentEpisode, sumOfRewards);
Set<Pair<State, A>> stateActionPairs = new HashSet<>();
state = nextState;
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
e.printStackTrace();
for (StepResult<A> sr : episode) {
stateActionPairs.add(new Pair<>(sr.getState(), sr.getAction()));
}
System.out.println("stateActionPairs " + stateActionPairs.size());
for (Pair<State, A> stateActionPair : stateActionPairs) {
int firstOccurenceIndex = 0;
// find first occurance of state action pair
for (StepResult<A> sr : episode) {
if (stateActionPair.getKey().equals(sr.getState()) && stateActionPair.getValue().equals(sr.getAction())) {
break;
}
dispatchStepEnd();
firstOccurenceIndex++;
}
dispatchEpisodeEnd(sumOfRewards);
System.out.printf("Episode %d \t Reward: %f \n", i, sumOfRewards);
Set<Pair<State, A>> stateActionPairs = new HashSet<>();
for(StepResult<A> sr: episode){
stateActionPairs.add(new Pair<>(sr.getState(), sr.getAction()));
}
System.out.println("stateActionPairs " + stateActionPairs.size());
for(Pair<State, A> stateActionPair: stateActionPairs){
int firstOccurenceIndex = 0;
// find first occurance of state action pair
for(StepResult<A> sr: episode){
if(stateActionPair.getKey().equals(sr.getState()) && stateActionPair.getValue().equals(sr.getAction())){
;
break;
}
firstOccurenceIndex++;
}
double G = 0;
for(int l = firstOccurenceIndex; l < episode.size(); ++l){
G += episode.get(l).getReward() * (Math.pow(discountFactor, l - firstOccurenceIndex));
}
// slick trick to add G to the entry.
// if the key does not exists, it will create a new entry with G as default value
returnSum.merge(stateActionPair, G, Double::sum);
returnCount.merge(stateActionPair, 1, Integer::sum);
stateActionTable.setValue(stateActionPair.getKey(), stateActionPair.getValue(), returnSum.get(stateActionPair) / returnCount.get(stateActionPair));
double G = 0;
for (int l = firstOccurenceIndex; l < episode.size(); ++l) {
G += episode.get(l).getReward() * (Math.pow(discountFactor, l - firstOccurenceIndex));
}
// slick trick to add G to the entry.
// if the key does not exists, it will create a new entry with G as default value
returnSum.merge(stateActionPair, G, Double::sum);
returnCount.merge(stateActionPair, 1, Integer::sum);
stateActionTable.setValue(stateActionPair.getKey(), stateActionPair.getValue(), returnSum.get(stateActionPair) / returnCount.get(stateActionPair));
}
}
@ -112,4 +111,9 @@ public class MonteCarloOnPolicyEGreedy<A extends Enum> extends EpisodicLearning<
public int getCurrentEpisode() {
return currentEpisode;
}
@Override
public int getEpisodesPerSecond(){
return episodePerSecond;
}
}

View File

@ -3,26 +3,37 @@ package core.controller;
import core.DiscreteActionSpace;
import core.Environment;
import core.ListDiscreteActionSpace;
import core.algo.EpisodicLearning;
import core.algo.Learning;
import core.algo.Method;
import core.algo.mc.MonteCarloOnPolicyEGreedy;
import core.gui.LearningView;
import core.gui.View;
import core.listener.LearningListener;
import core.listener.ViewListener;
import core.policy.EpsilonPolicy;
import javax.swing.*;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class RLController<A extends Enum> implements ViewListener {
public class RLController<A extends Enum> implements ViewListener, LearningListener {
protected Environment<A> environment;
protected Learning<A> learning;
protected DiscreteActionSpace<A> discreteActionSpace;
protected View<A> view;
protected LearningView learningView;
private int delay;
private int nrOfEpisodes;
private Method method;
private int prevDelay;
private boolean fastLearning;
private boolean currentlyLearning;
private ExecutorService learningExecutor;
private List<Double> latestRewardsHistory;
public RLController(){
learningExecutor = Executors.newSingleThreadExecutor();
}
public void start(){
@ -39,20 +50,37 @@ public class RLController<A extends Enum> implements ViewListener {
default:
throw new RuntimeException("Undefined method");
}
/*
not using SwingUtilities here on purpose to ensure the view is fully
initialized and can be passed as LearningListener.
*/
view = new View<>(learning, environment, this);
learning.addListener(view);
learning.learn(nrOfEpisodes);
SwingUtilities.invokeLater(()->{
learningView = new View<>(learning, environment, this);
learning.addListener(this);
});
if(learning instanceof EpisodicLearning){
learningExecutor.submit(()->((EpisodicLearning) learning).learn(nrOfEpisodes));
}else{
learningExecutor.submit(()->learning.learn());
}
}
/*************************************************
* VIEW LISTENERS *
*************************************************/
@Override
public void onLearnMoreEpisodes(int nrOfEpisodes){
if(!currentlyLearning){
if(learning instanceof EpisodicLearning){
learningExecutor.submit(()->((EpisodicLearning) learning).learn(nrOfEpisodes));
}else{
throw new RuntimeException("Triggering onLearnMoreEpisodes on non-episodic learning!");
}
}
}
@Override
public void onEpsilonChange(float epsilon) {
if(learning.getPolicy() instanceof EpsilonPolicy){
((EpsilonPolicy<A>) learning.getPolicy()).setEpsilon(epsilon);
SwingUtilities.invokeLater(() -> view.updateLearningInfoPanel());
SwingUtilities.invokeLater(() -> learningView.updateLearningInfoPanel());
}else{
System.out.println("Trying to call inEpsilonChange on non-epsilon policy");
}
@ -65,12 +93,12 @@ public class RLController<A extends Enum> implements ViewListener {
private void changeLearningDelay(int delay){
learning.setDelay(delay);
SwingUtilities.invokeLater(() -> view.updateLearningInfoPanel());
SwingUtilities.invokeLater(() -> learningView.updateLearningInfoPanel());
}
@Override
public void onFastLearnChange(boolean fastLearn) {
view.setDrawEveryStep(!fastLearn);
this.fastLearning = fastLearn;
if(fastLearn){
prevDelay = learning.getDelay();
changeLearningDelay(0);
@ -79,6 +107,45 @@ public class RLController<A extends Enum> implements ViewListener {
}
}
/*************************************************
* LEARNING LISTENERS *
*************************************************/
@Override
public void onLearningStart() {
currentlyLearning = true;
}
@Override
public void onLearningEnd() {
currentlyLearning = false;
SwingUtilities.invokeLater(()-> learningView.updateRewardGraph(latestRewardsHistory));
}
@Override
public void onEpisodeEnd(List<Double> rewardHistory) {
latestRewardsHistory = rewardHistory;
SwingUtilities.invokeLater(() ->{
if(!fastLearning){
learningView.updateRewardGraph(latestRewardsHistory);
}
learningView.updateLearningInfoPanel();
});
}
@Override
public void onEpisodeStart() {
}
@Override
public void onStepEnd() {
if(!fastLearning){
SwingUtilities.invokeLater(() -> learningView.repaintEnvironment());
}
}
public RLController<A> setMethod(Method method){
this.method = method;
return this;
@ -102,5 +169,4 @@ public class RLController<A extends Enum> implements ViewListener {
this.nrOfEpisodes = nrOfEpisodes;
return this;
}
}

View File

@ -1,11 +1,14 @@
package core.gui;
import core.Util;
import core.algo.Episodic;
import core.algo.EpisodicLearning;
import core.algo.Learning;
import core.listener.ViewListener;
import core.policy.EpsilonPolicy;
import javax.swing.*;
import java.awt.*;
public class LearningInfoPanel extends JPanel {
private Learning learning;
@ -18,6 +21,11 @@ public class LearningInfoPanel extends JPanel {
private JSlider delaySlider;
private JButton toggleFastLearningButton;
private boolean fastLearning;
private JCheckBox smoothGraphCheckbox;
private JCheckBox last100Checkbox;
private JCheckBox drawEnvironmentCheckbox;
private JTextField learnMoreEpisodesInput;
private JButton learnMoreEpisodesButton;
public LearningInfoPanel(Learning learning, ViewListener viewListener){
this.learning = learning;
@ -47,11 +55,37 @@ public class LearningInfoPanel extends JPanel {
fastLearning = !fastLearning;
delaySlider.setEnabled(!fastLearning);
epsilonSlider.setEnabled(!fastLearning);
drawEnvironmentCheckbox.setSelected(!fastLearning);
viewListener.onFastLearnChange(fastLearning);
});
smoothGraphCheckbox = new JCheckBox("Smoothen Graph");
smoothGraphCheckbox.setSelected(false);
last100Checkbox = new JCheckBox("Only show last 100 Rewards");
last100Checkbox.setSelected(true);
drawEnvironmentCheckbox = new JCheckBox("Update Environment");
drawEnvironmentCheckbox.setSelected(true);
add(delayLabel);
add(delaySlider);
add(toggleFastLearningButton);
if(learning instanceof EpisodicLearning) {
learnMoreEpisodesInput = new JTextField();
learnMoreEpisodesInput.setMaximumSize(new Dimension(200,20));
learnMoreEpisodesButton = new JButton("Learn More Episodes");
learnMoreEpisodesButton.addActionListener(e -> {
if (Util.isNumeric(learnMoreEpisodesInput.getText())) {
viewListener.onLearnMoreEpisodes(Integer.parseInt(learnMoreEpisodesInput.getText()));
} else {
learnMoreEpisodesInput.setText("");
}
});
add(learnMoreEpisodesInput);
add(learnMoreEpisodesButton);
}
add(drawEnvironmentCheckbox);
add(smoothGraphCheckbox);
add(last100Checkbox);
refreshLabels();
setVisible(true);
}
@ -60,14 +94,29 @@ public class LearningInfoPanel extends JPanel {
policyLabel.setText("Policy: " + learning.getPolicy().getClass());
discountLabel.setText("Discount factor: " + learning.getDiscountFactor());
if(learning instanceof Episodic){
episodeLabel.setText("Episode: " + ((Episodic)(learning)).getCurrentEpisode());
episodeLabel.setText("Episode: " + ((Episodic)(learning)).getCurrentEpisode() +
"\t Episodes to go: " + ((Episodic)(learning)).getEpisodesToGo() +
"\t Eps/Sec: " + ((Episodic)(learning)).getEpisodesPerSecond());
}
if (learning.getPolicy() instanceof EpsilonPolicy) {
epsilonLabel.setText("Exploration (Epsilon): " + ((EpsilonPolicy) learning.getPolicy()).getEpsilon());
epsilonSlider.setValue((int)(((EpsilonPolicy) learning.getPolicy()).getEpsilon() * 100));
}
delayLabel.setText("Delay (ms): " + learning.getDelay());
delaySlider.setValue(learning.getDelay());
if(delaySlider.isEnabled()){
delaySlider.setValue(learning.getDelay());
}
toggleFastLearningButton.setText(fastLearning ? "Disable fast-learning" : "Enable fast-learning");
}
protected boolean isSmoothenGraphSelected() {
return smoothGraphCheckbox.isSelected();
}
protected boolean isLast100Selected(){
return last100Checkbox.isSelected();
}
protected boolean isDrawEnvironmentSelected(){
return drawEnvironmentCheckbox.isSelected();
}
}

View File

@ -0,0 +1,9 @@
package core.gui;
import java.util.List;
public interface LearningView {
void repaintEnvironment();
void updateLearningInfoPanel();
void updateRewardGraph(final List<Double> rewardHistory);
}

View File

@ -3,7 +3,7 @@ package core.gui;
import core.Environment;
import core.algo.Learning;
import core.listener.ViewListener;
import core.listener.LearningListener;
import javafx.util.Pair;
import lombok.Getter;
import org.knowm.xchart.QuickChart;
import org.knowm.xchart.XChartPanel;
@ -12,8 +12,9 @@ import org.knowm.xchart.XYChart;
import javax.swing.*;
import java.awt.*;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
public class View<A extends Enum> implements LearningListener {
public class View<A extends Enum> implements LearningView{
private Learning<A> learning;
private Environment<A> environment;
@Getter
@ -25,14 +26,12 @@ public class View<A extends Enum> implements LearningListener {
private JFrame environmentFrame;
private XChartPanel<XYChart> rewardChartPanel;
private ViewListener viewListener;
private boolean drawEveryStep;
public View(Learning<A> learning, Environment<A> environment, ViewListener viewListener) {
this.learning = learning;
this.environment = environment;
this.viewListener = viewListener;
drawEveryStep = true;
SwingUtilities.invokeLater(this::initMainFrame);
initMainFrame();
}
private void initMainFrame() {
@ -92,46 +91,62 @@ public class View<A extends Enum> implements LearningListener {
};
}
public void setDrawEveryStep(boolean drawEveryStep){
this.drawEveryStep = drawEveryStep;
}
public void updateRewardGraph(final List<Double> rewardHistory) {
List<Integer> xValues;
List<Double> yValues;
if(learningInfoPanel.isLast100Selected()){
yValues = new CopyOnWriteArrayList<>(rewardHistory.subList(rewardHistory.size() - Math.min(rewardHistory.size(), 100), rewardHistory.size()));
xValues = new CopyOnWriteArrayList<>();
for(int i = rewardHistory.size() - Math.min(rewardHistory.size(), 100); i <rewardHistory.size(); ++i){
xValues.add(i);
}
}else{
if(learningInfoPanel.isSmoothenGraphSelected()){
Pair<List<Integer>, List<Double>> XYvalues = smoothenGraph(rewardHistory);
xValues = XYvalues.getKey();
yValues = XYvalues.getValue();
}else{
xValues = null;
yValues = rewardHistory;
}
}
public void updateRewardGraph(List<Double> rewardHistory) {
rewardChart.updateXYSeries("rewardHistory", null, rewardHistory, null);
rewardChart.updateXYSeries("rewardHistory", xValues, yValues, null);
rewardChartPanel.revalidate();
rewardChartPanel.repaint();
}
private Pair<List<Integer>, List<Double>> smoothenGraph(List<Double> original){
int totalXPoints = 100;
List<Integer> xValues = new CopyOnWriteArrayList<>();
List<Double> tmp = new CopyOnWriteArrayList<>();
int meanBatch = original.size() / totalXPoints;
if(meanBatch < 1){
meanBatch = 1;
}
int idx = 0;
int batchIdx = 0;
double batchSum = 0;
for(Double x: original) {
++idx;
batchSum += x;
if (idx == 1 || ++batchIdx % meanBatch == 0) {
tmp.add(batchSum / meanBatch);
xValues.add(idx);
batchSum = 0;
}
}
return new Pair<>(xValues, tmp);
}
public void updateLearningInfoPanel() {
this.learningInfoPanel.refreshLabels();
}
@Override
public void onEpisodeEnd(List<Double> rewardHistory) {
SwingUtilities.invokeLater(() ->{
if(drawEveryStep){
updateRewardGraph(rewardHistory);
}
updateLearningInfoPanel();
});
}
@Override
public void onEpisodeStart() {
if(drawEveryStep) {
SwingUtilities.invokeLater(this::repaintEnvironment);
}
}
@Override
public void onStepEnd() {
if(drawEveryStep){
SwingUtilities.invokeLater(this::repaintEnvironment);
}
}
private void repaintEnvironment(){
if (environmentFrame != null) {
public void repaintEnvironment(){
if (environmentFrame != null && learningInfoPanel.isDrawEnvironmentSelected()) {
environmentFrame.repaint();
}
}

View File

@ -3,6 +3,8 @@ package core.listener;
import java.util.List;
public interface LearningListener{
void onLearningStart();
void onLearningEnd();
void onEpisodeEnd(List<Double> rewardHistory);
void onEpisodeStart();
void onStepEnd();

View File

@ -4,4 +4,5 @@ public interface ViewListener {
void onEpsilonChange(float epsilon);
void onDelayChange(int delay);
void onFastLearnChange(boolean isFastLearn);
void onLearnMoreEpisodes(int nrOfEpisodes);
}

View File

@ -8,14 +8,12 @@ import java.awt.*;
public class AntWorldComponent extends JComponent {
private AntWorld antWorld;
private HistoryPanel historyPanel;
public AntWorldComponent(AntWorld antWorld, AntAgent antAgent){
this.antWorld = antWorld;
setLayout(new BorderLayout());
CellsScrollPane worldPane = new CellsScrollPane(antWorld.getCellArray(), antWorld.getAnt(), 10);
CellsScrollPane antBrainPane = new CellsScrollPane(antAgent.getKnownWorld(), antWorld.getAnt(), 10);
historyPanel = new HistoryPanel();
JComponent mapComponent = new JPanel();
FlowLayout flowLayout = new FlowLayout();
@ -23,9 +21,7 @@ public class AntWorldComponent extends JComponent {
mapComponent.setLayout(flowLayout);
mapComponent.add(worldPane);
mapComponent.add(antBrainPane);
add(BorderLayout.CENTER, mapComponent);
add(BorderLayout.SOUTH, historyPanel);
setVisible(true);
}

View File

@ -1,28 +0,0 @@
package evironment.antGame.gui;
import javax.swing.*;
import java.awt.*;
public class HistoryPanel extends JPanel {
private final int panelWidth = 1000;
private final int panelHeight = 300;
private JTextArea textArea;
public HistoryPanel(){
setPreferredSize(new Dimension(panelWidth, panelHeight));
textArea = new JTextArea();
textArea.setLineWrap(true);
textArea.setWrapStyleWord(true);
textArea.setEditable(false);
JScrollPane scrollBar = new JScrollPane(textArea, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
scrollBar.setPreferredSize(new Dimension(panelWidth, panelHeight));
add(scrollBar);
setVisible(true);
}
public void addText(String toAppend){
textArea.append(toAppend);
textArea.append("\n\n");
revalidate();
}
}

View File

@ -14,7 +14,7 @@ public class RunningAnt {
.setEnvironment(new AntWorld(3,3,0.1))
.setAllowedActions(AntAction.values())
.setMethod(Method.MC_ONPOLICY_EGREEDY)
.setDelay(10)
.setDelay(200)
.setEpisodes(100000);
rl.start();
}